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BaPb,-,Bi,O, and Ba,K,-.BiO, 
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Department of Material Physics, Faculty of Engineering Science, Osaka University, 
Toyonaka 560, Japan 
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Abstract. The electron-lattice interaction of BaPb,-,BixO, (BPB) and Ba,K,_,BiO, (BKB) is 
studied microscopically by using the realistic electronic bands of BaBi03  reproduced by the 
tight-binding model. It is found that the electron-lattice coupling coefficients have strong 
wavevector and mode dependences. The electron-lattice interaction causes a remarkable 
renormalisation of the longitudinal oxygen stretching and/or breathing mode vibration. 
Superconductivity is discussed in the framework of the strong-coupling theory of the phonon 
mechanism. The spectral function a2F( CO) has some prominent structures in the frequency 
range of the oxygen stretching/breathing mode. As x increases, some of the main peaks in 
crzF(w) shift to the lower-frequency side, reflecting the phonon frequency renormalisation. 
The transition temperature T, and the energy gap function A(&) at T = 0 K have been 
evaluated by solving the Eliashberg equations. The calculated T, increases rapidly with 
increasing x, and reaches about 30 K for x = 0.7. The oxygen isotope shift of T, in BKB is 
calculated and the characteristic exponent cr defined by T ,  M," (MO is oxygen atomic 
mass) is evaluated to be 0.35-0.45. The superconducting energy gap A" is evaluated to be 
4.8 meV for x = 0.7. The ratio 2A0/kBTc is found to have a value close to that predicted 
by the Bardeen-Cooper-Schrieffer weak-coupling theory (2A0/kBTc = 3.5). However, the 
calculated tunnelling differential conductance dI/d Vand its derivative dzI/d V2 show behav- 
iours that are characteristic to the strong-coupling superconductor. 

1. Introduction 

The oxide superconductor BaPbl -,Bi,03 (BPB) with perovskite-type structure is a 
prototype of a series of high-transition-temperature ( T,) oxides. BPB exhibits a metallic 
behaviour in the composition range 0 < x < 0.35 and becomes a superconductor with a 
relatively high T, [l]. On the other hand, BPB shows semiconducting properties over the 
wide range 0.35 < x G 1. The observed T, shows a remarkable dependence on x and 
takes its maximum T, = 12 K around x = 0.25 [2], which is extraordinarily high among 
superconductors not containing any transition elements. Such a relatively high T, con- 
trasts with the experimental facts that BPB has a low carrier density n = 1021 cm-3 [2] or 
a small density of states at the Fermi level N(E,) = 10-1 states/(eV unit cell spin) [3]. 

Recently Ba,K,-,Bi03 (BKB) has been found to have the highest T, (-28 K at x = 
0.7) among oxide superconductors not containing Cu ions [4-61. It should be noted 
that the notation of composition x differs from the usual one, i.e. Bal-,K,BiO,, for 
convenience in dealing with both BPB and BKB simultaneously. 
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An unsolved question is whether the origin or mechanism of superconductivity in 
high-T, oxides is the usual phonon mechanism or not. Neither BPB nor BKB contain any 
transition-metal element. Hence, the magnetic mechanism may not be expected for the 
superconductivity in these compounds. In fact no magnetic order has been observed in 
BPB and BKB by the muon spin rotation experiments [7] and the magnetic susceptibility 
in the normal state in BPB and BKB shows a Pauli paramagnetic behaviour [8-lo]. 
Therefore, it is quite important to make a thorough investigation of the super- 
conductivity in BPB and BKB on the basis of the phonon mechanism. 

We have already studied [ll-131 microscopically the electron-lattice interaction and 
the lattice dynamics of BPB in the composition range 0 < x < 0.35, and the super- 
conducting transition temperature T, has been estimated on the basis of the semi- 
empirical McMillan equation. It has been pointed out that the wavevector and mode 
dependences of the electron-lattice interaction would play an important role in the 
lattice dynamics and the superconductivity. The purpose of the present paper is, first, 
to extend our investigation to a wider composition range (0 < x < 1), which covers the 
superconducting composition of BKB, and, secondly, to study in detail the super- 
conducting properties of BPB and BKB in the framework of the strong-coupling theory 
based on the Eliashberg equation. 

In section 2 the electron-lattice interaction in BPB and BKB is studied microscopically 
on the basis of the realistic electronic band structure. In section 3 the lattice dynamics 
of these compounds is investigated by taking account of the effect of the electron-lattice 
interaction. In section 4 the spectral function a2F(w)  is first calculated by utilising the 
results obtained in sections 2 and 3, and then the transition temperature T,, the oxygen 
isotope shift of T, and the gap function A(&) at T = 0 K are calculated by solving the 
Eliashberg equation. The results are compared with experiments. Finally, section 5 is 
devoted to a summary. Part of the present work has been reported elsewhere [14,15]. 

2. Electron-lattice interaction 

We have studied the electron-lattice interaction in BPB by using the realistic conduction 
band obtained by the tight-binding approximation [ l l ] .  The electronic band structure 
of BPB has been originally calculated by Mattheiss and Hamann [16] using the self- 
consistent scalar-relativistic linearised augmented plane-wave (LAPW) method. They 
have carried out the LAPW band calculation for BaPb03, BaPb0,7Bi0,303 and BaBiO, in 
the cubic structure. According to their results the conduction bands of the above three 
compounds have almost the same structure. It has been shown that their conduction 
band consists mainly of a a-bonding of 0 2p and Pb (or Si)  6s orbitals and that it can be 
well reproduced by the tight-binding (TB) model with three kinds of Slater-Koster [17] 
transfer integrals between nearest-neighbouring 0 and Pb (or Si)  atoms. Recently 
Matthiess and Hamann [18] calculated the band structure of the ordered alloy 
Bao,5Ko,5Bi03, and it is confirmed that the conduction band of BaBi03 is little affected 
by substitution of K for Ba. Therefore, we use the same conduction band for both BPB 
and BKB, and adopt the rigid-band approximation, i.e. we assume that as x increases the 
TB conduction band is filled gradually without change of its dispersion. At x = 0 the 
conduction band is empty and at x = 1 it is half-filled. The values of the three transfer 
integrals used in the present work are as follows: t(spa) = 2.2 eV, t( ppo) = 2.7 eV and 
t( ppn) = -0.9 eV. 
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In the TB approximation the electron-lattice coupling is described by the change of 
transfer integrals and of site energies due to atomic displacements. In this paper, 
however, we account only for the transfer term for simplicity because we have confirmed 
that the site-energy term leads to almost the same result as that of the transfer term. The 
coupling coefficient between two Bloch states nk and n’k’ caused by displacement of the 
pth atom along the a direction (a = x, y,  z )  is expressed as follows 1191: 

g,“(nk, n ’k ’ )  = [At(k)]n,,urm[ii‘,”(k, k’>l,’a,u’b[A(k’)l ,’b, ,’ .  (1) 
,u’a u’b 

Here A(k)  represents the transformation coefficients, which diagonalise the Ham- 
iltonian matrix of the undistorted structure, and $ ( k ,  k ’ )  is written in terms of deriva- 
tives of the transfer integrals, t‘(spo), t’(ppa) and t’(ppn). By taking into consideration 
electronic band structures in a distorted phase of BaBiO, the magnitude oft’  has been 
estimated to be about 4 eV A-’ [12]. 

The intra-band electron-phonon coupling coefficient for the conduction band can 
bedefinedby 

Here y specifies the phonon mode, E y , , , ( q )  represents the phonon polarisation vector, 
M p  is the mass of the pth atom, and c in 8,” denotes the conduction band. Figure 1 shows 
the dependences on k of V ( k ,  k - q)  for the fixed value of q = ( n / a ,  n / a ,  n / a ) ,  the R 
point in the Brillouin zone (BZ). We have used the following values for the derivatives 
of the transfer integrals: 

t’(spa) = -4.05 eV A-’ 

t’(ppo) = -4.17 eV A-]  

t‘(ppn) = 3.78 eV A-’  

As shown later, for these values the cubic structure of BPB and BKB becomes unstable 
for x 3 0.9 against a distorted structure described as the frozen state of the so-called 
breathing phonon mode at the R point. Throughout this paper we use the above values 
for the derivatives of the transfer integrals. 

As seen from figure 1 the electron-phonon coupling for the A,, phonon mode (so- 
called breathing mode) is stronger than that for the other modes almost throughout the 
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Table 1. Short-range force constants (eV A-’) determined from the neutron scattering 
measurements. 

Stretching Bending 

(Pb,Bi)-0 4.678 - 

B a-( Pb ,Bi) 1.426 __ 
B a-(Ba, K) 0.129 - 
(Pb,Bi)-(Pb,Bi) 0.968 - 

0-0 1.104 -0.055 
Ba-0 0.309 - 

BZ. The stretching-type deformation of (Pb,Bi)06 octahedra, which corresponds to the 
E, mode, has the next strongest electron-lattice coupling. The coupling coefficients for 
the vibration of (Pb,Bi) atoms are almost an order of magnitude smaller than those for 
the A,, and/or E, modes, because the mass of (Pb,Bi) is about 13 times larger than that 
of 0 atoms. Since the conduction band states consist of the 0 2p and (Pb,Bi) 6s and 6p 
orbitals, the vibrations of the (Ba,K) atoms cannot affect the conduction band states. 
The displacements of 0 atoms in directions tangential to nearest-neighbouring (Pb,Bi)- 
0 bonds also have no contribution to the electron-lattice interaction as long as we 
take into account only the first-order coupling coefficient with respect to the atomic 
displacement. Hence, the coupling coefficients for the rotational and bending mode of 
(Pb,Bi)O, octahedra definitely become zero in the present case. 

3. Lattice dynamics 

We have studied the lattice dynamics, which gives important information on the role of 
the electron-lattice interaction in the present system. The phonon frequencies have 
been obtained by diagonalising the dynamic matrix D(q) ,  which can be divided into two 
parts, x(q)  and Do(q). Here, x(q )  represents the generalised electronic susceptibility, 
and the matrix elements of x(q)  are given by 

whereg,”(ck, ck - q )  is the electron-lattice coupling coefficient for the conduction band, 
E! denotes the conduction band energy in the undistorted structure and f ( E i )  is the 
Fermi distribution function, The Fourier transform of x b  (q)  corresponds to the effective 
long-range interatomic force caused by the electron-lattice interaction. On the other 
hand, Do(q) denotes contributions other than x(q) .  Usually Do(q) is expressed as the 
Fourier transform of interatomic short-range forces. 

First, we have calculated phonon frequencies w& with neglect of x(q ) .  For short- 
range forces we have considered the stretching force for six kinds of nearest-neigh- 
bouring atomic pairs and the tangential force for one kind of nearest-neighbouring 
atomic pair. The seven force constants in total have been determined so as to reproduce 
seven phonon frequencies observed in BaPbo,75Bi0.2503 by inelastic neutron scattering 
measurements [20] (full circles in figure 2(a)). The short-range force constants thus 
determined are listed in table 1. Since Pb and Bi atoms are next door to each other in 
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Figure 2. (a )  The phonon dispersion curves calculated with neglect of ,y(q). The full curves 
represent the transverse mode and the broken curves the longitudinal mode. The full circles 
indicate the experimental data utilised in determining the short-range force constants. (b )  
The phonon density of states neglecting ~(4). Four kinds of decomposed density of states 
are also shown. 

the periodic table, we have regarded Pb and Bi as the same atom and neglected the effect 
of the randomness. 

The phonon dispersion curves calculated along the (1 0 O ) ,  (1 1 0) and (1 1 1) directions 
are shown in figure 2(a) and the phonon density of states is shown in figure 2(b). The 
frequencies of oxygen stretching vibration towards the nearest-neighbouring Pb (or Si)  
atoms lie around 60 meV and those of oxygen bending modes extend in the range from 
10 to 35 meV. The frequencies of phonon modes arising mainly from Ba atoms lie around 
15 meV. Vibrations of Pb (or Si)  atoms are mainly included in acoustic branches up to 
20 meV. 

In BKB the atomic masses of Ba and K are quite different and hence we have to take 
into account the effect of the randomness. Further, for nearest-neighbouring K-0, 
K-Bi and K-K pairs we should use force constants different from those for nearest- 
neighbouring Ba-0, Ba-(Pb,Bi) and Ba-Ba pairs. As noted in section 2, however, 
vibrations of Ba or K atoms are hardly coupled with the conduction band states. Further, 
the vibrations of 0 atoms, which are shown later to play an important role in the 
superconductivity, are little affected by the short-range force constants associated with 
Ba or K atoms. Therefore, in the following we neglect the difference between Ba and K 
atoms in BKB and use the short-range force constants associated with Ba atoms in table 
1 even for those associated with K atoms. 

Next we have calculated the phonon dispersion curves by including the generalised 
electronic susceptibility x(q)  into the dynamic matrix D(q). The dispersion curves and 
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Figure 3. (a )  The phonon dispersion curves and ( b )  the phonon density of states calculated 
including x(q)  for x = 0.7. 

the density of states F(o) calculated for x = 0.7 are shown in figures 3(a) and ( b ) ,  
respectively. By comparing figures 2(a) and 3(a) it is seen that the electron-lattice 
interaction causes a remarkable energy renormalisation for the longitudinal (L) mode 
of oxygen stretching and/or breathing vibrations whose bare frequencies lie near 
60 meV. The phonon frequency renormalisation shows remarkable wavevector depen- 
dences. For x = 0.7, remarkable renormalisation is found near the BZ boundary 
especially around the M and R points. It originates from the nesting effect of the Fermi 
surface as well as the remarkable wavevector dependences of the electron-phonon 
coupling shown in figure 1. The overall features of the phonon density of states in figure 
3(b) are in agreement with the results of molecular dynamics simulation and of neutron 
scattering measurements [21], except for the high-frequency range between 60 and 
80 meV. 

The magnitude of the renormalisation of the longitudinal (L) oxygen (0) stretching/ 
breathing mode increases on increasing the value of x .  For x 3 0.9 the 0 breathing 
phonon at the R point vanishes and hence the lattice becomes unstable against formation 
of the distorted structure described by that phonon. Experimentally the structure of 
BaBi03 at room temperature has been confirmed to be described by a frozen state of 
the 0 breathing phonon just at the R point [22]. 

Mysteriously the energies of the L 0 stretching/breathing mode have not been 
detected in the neutron scattering experiments in BaPb0,75Bi0.2503 [20]. Instead, rather 
broad peaks were observed near the BZ boundary in the energy region of 40-45 meV. 
A reason why the phonon mode cannot be detected is considered as broadening of the 
phonon linewidth because of the strong electron-lattice interaction. Thus, phonon 
linewidth caused by the electron-lattice interaction is calculated microscopically. The 
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phonon linewidth is related to the imaginary part of the polarisation function. If we 
evaluate the polarisation function in the Migdal approximation [23],  then the phonon 
linewidth is expressed as [24] 

We have found that the L 0 stretching/breathing mode phonons broaden significantly 
because of the strong electron-lattice interaction. The L 0 stretching/breathing mode 
phonons have linewidth several orders of magnitude larger than that of the other modes. 
Especially near the M point where the phonon frequencies are renormalised most 
significantly, the full width becomes at most about 14 meV for x = 0.7. 

4. Superconductivity 

4.1. Spectral function a2F(w) 
To discuss the superconductivity of BKB and BPB in the framework of the strong-coupling 
theory based on the phonon mechanism, we first calculate the spectral function a2F(w) 
defined by 

where VY(k, k ' )  is the electron-phonon coupling coefficient defined by equation ( 2 ) ,  
and w; denotes the renormalised phonon frequency. The calculated a2F(w) is shown by 
full curves in figure 4, together with the phonon density of states F ( w )  (broken curves). 
It is found that a2F( w )  has a frequency dependence entirely different from that of F( 0). 
It should be noted that a2F(w)  has some prominent structures in the frequency range 
where 0 stretching/breathing mode branches lie. Thus, the 0 stretching/breathing 
mode is expected to contribute dominantly to the superconductivity. As x increases, 
some main peaks in a2F(w) shift to the lower-energy side, reflecting the phonon fre- 
quency renormalisation, and the magnitude of a2F( w )  increases remarkably in the 
whole energy range up to 60 meV. This considerable change in a2F(w) is expected to 
bring a remarkable dependence on x of T,. 

The dimensionless coupling constant A is evaluated by integrating a2F(o) as 

The results are shown as a function of x in figure 5. It is found that A increases rapidly 
with increasingx, especially forx > 0.5. This behaviour is due to the renormalisation of 
the 0 stretching/breathing mode phonons. Finally, A exceeds 1.0 for x > 0.7, which 
indicates that BKB belongs to the strong-coupling superconductors. Recent heat capacity 
measurements for Ba0,6K0,4Bi03 [25] revealed that the electronic specific heat coefficient 
was y = 1.5 mJ mol-' K-2. Then, from the relation y = h 2 N ( E F ) k k ( l  + A )  with use of 
the calculated value of N(EF)  = 0.23 states/(eV unit cell spin), A is estimated to be 0.35, 
which is smaller than the theoretical value A = 0.8 obtained for x = 0.6. The reason for 
this discrepancy is not clear at present. 
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Figure 4. The spectral function (u2F(w) (full curves) and the phonon density of states F ( w )  
(broken curves) calculated forx = 0.1,0.3,0.5 and 0.7. a2F(o) is a dimensionless quantity. 

Figure 5. The dimensionless electron-phonon 
coupling constant h evaluated as a function of x.  
The hatched area represents the region where the 
lattice becomes unstable against formation of a 
CDW corresponding to the frozen state of the 0 
breathing mode at the R point. 

4.2. Transition temperature and isotope effect 

The superconducting transition temperature T, is determined by solving the Eliashberg 
equation at finite temperatures [26]. It is much more convenient for numerical cal- 
culations to solve the ‘imaginary-axis’ version of the Eliashberg equation, which is 
defined on Matsubara imaginary frequencies iE, = (2n + l)nikgT (n  is an integer). At 
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Figure 6. The superconducting transition tem- 
perature T,asafunctionofxforp* = O ( * ) ,  0.05 
(A), 0.10 (U) and 0.15 (O), respectively. The 
experimental data for BPB, (0) [ 2 ] ,  and for BKB, 

(0) [6], (A) [ 9 ] ,  (0) [33], are also shown. The 
hatched area denotes the region where the lattice 
becomes unstable against formation of a CDW cor- 
responding to the frozen state of the 0 breathing 
mode at the R point. 

any temperature T < T, the Eliashberg equation is a set of non-linear coupled equations. 
When the temperature approaches T,, however, the coupled equations can be decoupled 
and expanded with respect to the gap function A(ie,) as follows [27]: 

m I t m l  

where ,u* is the effective screened Coulomb repulsion constant [28], 

g m  = Em + J'CkBTx Sgn(&[)h(&, - E l )  (8) 
l 

and 

252 A(&,) = JOB d52 a2F(52) ~ 

5 2 2  + E ? ,  (9) 

Therefore, T, can be determined so that the linearised gap equation (7) has any 
non-trivial solution for A@,) at T = T,: 

A(&, - E , )  - #U* 

lgml 
det nkB T,  - a,, 1 = 0. 

In calculating T, the dimension of the matrix in the determinant of equation (10) has 
been cut off at 200. The obtained dependence of T, on x is shown in figure 6. For each 
x, we have calculated T, with four different values of p* = 0,0.05,0.10 and 0.15. In most 
superconductors p* has been taken empirically to be between 0.10 and 0.15. The 
calculated T, increases rapidly with increasing x as long as lattice instability does not 
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Table 2. Calculated oxygen isotope effect on T,. Values of the characteristic exponent a, 
defined by T, a M," ( M O  is mass of an oxygen atom), are given. 

X 

P *  0.5 0.6 0.7 
~ ~~ 

0 0.42 0.43 0.45 
0.05 0.40 0.41 0.44 
0.10 0.39 0.40 0.43 
0.15 0.36 0.38 0.42 

occur,andreaches31.3 Kforx = 0.7(A = 1.09,p* = 0.1). Inthepresentcasethelattice 
becomes unstable against charge-density-wave (CDW) formation for x 3 0.9. Thus, the 
superconducting state of BKB is bordered by the CDW state. Our results for T, agree well 
with the observed T, in BKB, but disagree with those in BPB. One of the reasons for this 
discrepancy in BPB may be that the rigid-band model is insufficient to describe BPB, 
because in BPB the Pb atom, which is one of the constitutive elements of the conduction 
band, is substituted randomly by the Bi atom. 

It should be noted here that one must be careful in using the McMillan [29] or Allen- 
Dynes [30] equation for T,. The latter is given by 

(U )  ( -1.04(1 + A )  
1.2 

T, = - exp 
A - p*(l  + 0.62A) 

where (U)  denotes the average phonon frequency defined by 

By using the calculated a 2 F ( w ) ,  (U )  is evaluated to be 28 meV for x = 0.7. If we use this 
value of (U )  and the value of A = 1.09 for x = 0.7, T, is calculated to be 26 K from 
equation (11). Therefore the Allen-Dynes equation gives relatively accurate T, as long 
as we use the value of (U )  evaluated appropriately. However, if we use F(o) of the 
Debye model with the observed Debye temperature OD = 280 K [31] instead of a2F(w) 
in equation (12), then (w) = 0.605kBOD = 14 meV and T,is calculated to be 13 K,  which 
is much smaller than that obtained directly from the Eliashberg equation. Thus, one 
should carefully evaluate the value of (U )  when using the Allen-Dynes equation for the 
evaluation of T,. 

Next, the isotope shift of T, has been estimated by calculating T, when l60 is replaced 
with "0 and lSO. A characteristic exponent a, defined as T ,  M," ( M O  is oxygen 
atomic mass), is evaluated from the slope of the In T, versus In MO plots. The evaluated 
exponents a for x = 0.5, 0.6 and 0.7 are listed in table 2. It is found that a takes rather 
smaller values than the co-called Bardeen-Cooper-Schrieffer (BCS) value ( a  = 0.5) [32]. 
Experimentally the value of a i s  estimated to be 0.21 by Batlogg et a1 [9], 0.35 by Kondoh 
et a1 [lo] and 0.41 by Hinks et a1 [33]. The principal reason why a differs from the BCS 
value is that the vibrations of atoms other than oxygens, such as Bi atoms, contribute 
appreciably to the superconductivity, particularly in the case where a substantial phonon 
frequency renormalisation is caused by the electron-lattice interaction. Barbee eta1 [34] 
have carried out calculations of a i n  Lal 85Sro 15Cu04 by using a simplified model spectral 
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function. They also have pointed out the possibility that the value of a can be much 
smaller than the BCS value for specific isotopic substitutions in compound super- 
conductors. 

4.3. Energy gap at T = 0 K and tunnelling spectra 

Tunnelling measurement is a powerful method that can observe directly the super- 
conducting energy gap. Schrieffer et a1 [35] have shown that the differential conductances 
dl/dV through the junction between the superconductor and the normal metal is pro- 
portional to the electronic density of states Ns(&) in the superconducting state as 

where N(EF) denotes the electronic density of states at the Fermi level E, in the normal 
state, and A(&) represents the energy-dependent gap function at T = 0 K. Here, A(&) is 
determined by solving the Eliashberg equation for T = 0 K and it is given [36] by 

- 3 
E’  + E + w - i d  E’  - E +  w - id x los d w  a 2 F ( w )  ( 

and 

1 
E’  + E + w - id 

+ 
E’ - E + w - id x lox d w  n 2 F ( w ) (  

p* E C  & I  

Z (E )  I,, ! Id2 - A ( E ’ ) ~ ] ~ / ~  
-- de’  Re ) ( d +  + O ) .  

Here E ( & )  is the electronic self-energy of the normal state, Z(E)  = 1 - E ( & ) / &  is called 
the mass enhancement function, and A. is defined by A. = A(Ao), which denotes the 
superconducting energy gap. 

Once the spectral function a2F(w) and p* are given, E ( & )  and A(&) are calculated by 
utilising equations (14) and (15) in a self-consistent manner. In actual calculations the 
cut-off energy E, has been taken to be 200 meV and A(&) has converged sufficiently in 
several iterations. The obtained Z(E)  and A(&) for x = 0.7 and I *  = 0.1 are shown in 
figures 7(a) and ( b ) ,  respectively. It is found that the real part of the renormalisation 
function Z(E)  has some small peaks up to 60 meV, which correspond to the peaks in 
a2F(w).  On the other hand, A(&) has sharp and prominent structures reflecting the 
peaks in a2F(o), and the structures are extended to the higher-energy range above 
60 meV. The superconducting energy gap A. is found to be 4.8 meV. This result is in 
good agreement with the recent optical measurements [37], which show A. = 4.4 meV. 
Since T, has been evaluated to be 31.3 K forx = 0.7 and p* = 0.1, the ratio 2AO/kBTc is 
found to be about 3.6,  which is accidentally close to that predicted by the BCS theory 
(2Ao/kBT, = 3.5). 
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Figure 7. (a )  The renormalisation function Z(E)  
and ( b )  the gap function A(&) determined by 
solving the Eliashberg equation at T = 0 K for 
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Figure 8. (a )  The differential conductance dI/d V 
and (b )  its derivative d21/dV2 calculated for x = 

results obtained by using the BCS weak-coupling 
theory. 

0.7and,u* = 0.1.Thebrokencurvesrepresentthe 

Such prominent structures in A(&) as shown in figure 7(b)  can be observed by the 
tunnelling experiments. The differential conductance dZ/d V calculated from equation 
(13) is shown by the full curve in figure 8(a) together with the BCS result (broken curve), 
which is given by 

Apparent deviations from the BCS result are clearly seen in figure 8(a). Figure 8(b) shows 
the derivative of the differential conductance, d2Z/d V2. In general d2Z/d V2 gives direct 
information about a 2 F ( w ) ,  i.e. negative peaks (dips) in d2Z/d V2 correspond to peaks 
in a2F(w) ,  Recently, tunnelling spectroscopy measurements with high resolution 
have been performed on Ba0.625K0.375Bi03 (Tc = 29 K) [38]. The observed curves of 
dZ/dV and d2Z/dV2 have lineshapes similar to those shown in figures 8(a) and ( b ) ,  
respectively. 
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5. Summary 

First, the electron-lattice interaction of BPB and BKB has been calculated microscopically 
by using the realistic electronic band structure reproduced by the tight-binding approxi- 
mation. We have confirmed that the vibrations of oxygen atoms along the direction 
toward the nearest-neighbouring Pb or Bi atoms have strong coupling with the con- 
duction band states. Such a mode dependence of the electron-lattice coupling arises 
from the nature of the conduction band states, i.e. the conduction band states consist 
mainly of the 6s and 6p orbitals of Pb or Bi atoms and the 2p orbitals of 0 atoms. 

Next, we have investigated the lattice dynamics of BPB and BKB by taking account of 
the effect of the electron-lattice interaction. It has been found that the electron-lattice 
interaction causes remarkable renormalisation of the longitudinal (L) 0 stretching and/ 
or breathing mode phonons especially near the Brillouin zone boundary. The phonon 
frequencies of these modes become lower and lower with increasing number of con- 
duction electrons or composition x. Finally lattice instability occurs accompanied by 
vanishing of these phonon frequencies. We have also found a broadening of linewidth 
for the renormalised phonons, which might be related to the absence of those phonon 
modes in the neutron scattering measurement. 

Further, the superconductivity of BPB and BKB has been discussed in the framework 
of the strong-coupling theory of the phonon mechanism. We have obtained the following 
results. 

(i) The spectral function a2F(o) takes large values in the frequency range where the 
L 0 stretching/breathing mode phonons lie, which implies the importance of these 
phonons for the superconductivity. 

(ii) The transition temperature T, has been calculated by solving the Eliashberg 
equation. It is found that T, increases rapidly with increasingx, and reaches 30 K around 
x = 0.7. The obtained dependence of T, on x agrees well with that observed in BKB. 

(iii) The isotope shift of T, has been investigated by calculating T, when l60 is 
replaced with 1 7 0  and l80. The characteristic exponent a defined by T ,  cc M," has a 
rather small value between 0.35 and 0.45 compared with that predicted by the BCS theory 
( a  = 0.5). The results agree well with the experimental data obtained by Kondoh et a1 
[lo] ( a  = 0.35) and/or by Hinks eta1 [33] ( a  = 0.41). 

(iv) The gap function A(&)  has been calculated for T = 0 K. The superconducting 
energy gap A. is estimated to be 4.8 meV for x = 0.7, which is in good agreement with 
the result obtained by optical measurements [37]. The ratio 2A,,/kBTc is found to have 
a value close to that predicted by the BCS weak-coupling theory (2AO/kBTc = 3.5). 
However, the tunnelling differential conductance dZ/d Vturns out to show the behaviour 
that is characteristic to the strong-coupling superconductor. 

Our results suggest that the superconducting properties in BKB, such as the magnitude 
of T,, the isotope shift of T,, the energy gap A. and the tunnelling spectrum, can be 
understood within the strong-coupling theory of thephononmechanism. It is particularly 
emphasised that the significant renormalisation of the L 0 stretching/breathing mode 
phonons plays an important role for the high T, in BKB. On the other hand, it is a further 
problem whether the superconductivity in BPB can be explained within the phonon 
mechanism. It seems that effects of random substitution of Bi for Pb have to be taken 
into account. 
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